524Uploads
221k+Views
119k+Downloads
Design, engineering and technology
Design an alarm for your schoolbag
**Use the BBC micro:bit programmable system to create a working prototype of a motion detector alarm. **
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day.
In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will develop their programmable system using the BBC micro:bit and the device’s inbuilt accelerometer to detect movement.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Medical imaging
A closer look at the techniques used to scan brain tissue
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics.
Activity info, teachers’ notes and curriculum links
An engaging starter activity making use of the short film ‘Mind Mapping’ (see related resources section below) and encouraging students to think about new technologies and how difficult it is to predict their future development and application. Students consider how engineers have created different and safe techniques of scanning brain tissue.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Mobile phone technology
The science behind communication technology
From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments.
Activity info, teachers’ notes and curriculum links
An engaging activity introducing students to the science behind communication technology, giving them an understanding of some of the vocabulary and concepts used.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
What is Sustainable Energy?
What is sustainable energy? What is a carbon footprint? The “Energy Efficiency” curriculum explores the meaning of these terms and encourages students to research what they can do as a school community to save energy and reduce their carbon footprint.
The activities use the example of Howe Dell Primary School, which was designed with the principle of sustainability. This provides a framework for students to compare their own school and identify simple energy-saving measures that they can implement to reduce their carbon footprint and save money. By studying Howe Dell Primary School, students can see how cutting-edge technology and science are being used to achieve sustainability goals.
Activity overview
Show the students the Green School film (available on the IET Education website). Ask them to briefly discuss, as a class, the following questions:
What do we mean by “sustainable energy” resources?
What types of sustainable energy resources are found in buildings today?
What does “carbon footprint” mean, and how is it calculated?
What is sustainable energy?
Sustainable energy is energy that meets the needs of the present without compromising the ability of future generations to meet their own needs. It is energy from renewable sources that do not produce greenhouse gases or other pollutants.
Sustainable energy is important for a number of reasons. It helps to reduce our reliance on fossil fuels, which are a finite resource and produce greenhouse gases that contribute to climate change. It also helps to improve air quality and create jobs in the clean energy sector.
What is a carbon footprint?
A carbon footprint is the total amount of greenhouse gases emitted by an individual, organisation, event, or product. Greenhouse gases trap heat in the atmosphere, which contributes to climate change.
A carbon footprint can be calculated for any activity or entity. There are several different methods for calculating carbon footprints. They all involve measuring the amount of greenhouse gases emitted during a product or service’s production, transportation, use, and disposal.
Suggested learning outcomes
By the end of this activity, students will be able to explain what “sustainable energy” and “carbon footprint” mean, and they will be able to describe and explain what sustainable technologies could be used in their school.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
How to make a simple electrical circuit
In this activity pupils will assemble a simple electric circuit. This is a great way for KS2 students to develop an understanding of how electric circuits function.
This free resource could be used in KS2 as an engaging stand-alone activity to introduce circuits, as an introduction to a design and make project (such as the doorbell activity) or as an extension to add a powered element to another design and make activity (such as adding a motor to the ‘cardboard cars’ activity).
This activity will take approximately 50-60 minutes.
Tools/resources required
Projector/Whiteboard
Components:
2 x AA batteries in holder
Electric motor (e.g. 3V 13100 Rpm DC Motor)
3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used)
Either: 2 metal split pin fasteners and 1 paper clip per pupil, or one switch per pupil
Sticky tape or electrical insulation tape.
If needed: wire cutters/strippers (to cut excess wire lengths)
(Potential sources for these components include Rapid online and TTS group)
Optional:
Hole punches (ideally single hole punches)
Pre-made models of the circuit, for demonstration
Electrical circuits
An electrical circuit is a group of components that are connected together, typically using wires. The wires are typically copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. The components included in an electric circuit could range from motors, light sources and buzzers to programmable integrated circuits.
The engineering context
Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers.
Suggested learning outcomes
By the end of this activity students will be able to construct an electrical switch, they will understand that a complete circuit is required for electricity to flow and they will be able to construct an electrical circuit.
Download the free How to make a simple electrical circuit activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Nuclear energy debate: pros and cons
Role play about the advantages and disadvantages of nuclear energy
As we rely so heavily on electrical energy in our lives, it’s crucial for students to understand the processes and implications of its generation. Our role play activity will engage the whole classroom through debate, where participants will discuss the advantages and disadvantages of generating electrical energy using nuclear fuel.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT).
Activity: Role play about the advantages and disadvantages of nuclear energy
In this activity, learners learn about nuclear energy and then assume various roles to discuss and debate a proposal to construct a new nuclear power station in their local area.
Learners will review how nuclear power is generated and then weigh its pros and cons. By executing a group role play, students will gain a deeper understanding of the topic. The activity concludes with class feedback, where learners justify their decisions, promoting reflective thinking.
Download our activity overview and presentation for a detailed lesson plan for teaching students about nuclear energy.
The engineering context
Engineering is all about problem-solving and making informed decisions. By debating the construction of a new nuclear power station, students will get a glimpse into the challenges engineers face daily. This activity will inspire them to think like engineers, weighing the pros and cons before making decisions that impact society.
Suggested learning outcomes
This activity is designed to help students grasp how electrical energy is generated from nuclear fuel and comprehend both the benefits and drawbacks of this method.
Furthermore, it encourages learners to apply their knowledge to real-world situations, enhancing their understanding of the issues surrounding electrical energy generation.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our classroom lesson plan and our PowerPoint presentation.
Please do share your highlights with us @IETeducation
User centered design poster
Secondary classroom poster highlighting the design process focusing on the needs of the user at each stage.
Download the single poster or order a full set of posters for free from the IET Education website.
Prosthetic devices
The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts.
Activity info, teachers’ notes and curriculum links to KS3 science materials
Using the short video ‘Bionic Limbs’, this activity is a quick, engaging introduction to a KS3 science materials lesson looking at the properties of modern materials. It encourages students to think about how technology is changing our society by generating their own ideas for prosthetic devices that they think will be realistic in the near future. There are takeaways for KS4 biology and KS3 product design.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheet and quiz for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation.
Prosthetics imitating the human body
Explore the body parts that can be replaced with prosthetic devices
With the constant advancement in materials and prosthetic technology, this engineering activity for kids explores different materials and their suitability in the use of prosthetics for different body parts. Students will gather data on different materials to create a presentation that can be used to discuss new materials and the part that they play in the development of prosthetic devices.
This free STEM resource is aimed at secondary school students. Students will be encouraged to think about how technology is changing our society.
This lesson can be introduced by talking about skeletons. An anatomical skeleton can be used as a prop.
Do you know what can be done when joints wear out in our skeletons?
Students will be divided into teams and asked to come up with a list of body parts that can be replaced with prosthetic devices.
Each team will explain their results to the rest of the class. Students can vote for the device they think is most likely to be made in the future.
This activity will take roughly 15 minutes to complete.
The engineering context
The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts.
The resources within this, and the related activities, encourage students to investigate the properties of smart materials and carry out some data manipulation. Students will also explore the possible moral and ethical issues associated with people potentially choosing to replace healthy body parts with artificial prostheses because they offer higher performance.
Suggested learning outcome
By the end of this activity students will be able to explain what joints are and how they work. They will also be able to suggest links between modern technology and health.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Design the trainers of the future
Designing footwear for sports use
Trainers are one of the most commonly worn shoes in our culture. They provide comfortable support for our feet as we go about our active lives as students, athletes, educators and engineers. The design of trainers (and all athletic shoes) is based on how they will be used and is an example of bioengineering.
This activity introduces the concept of research through product analysis to support the design process. The main activity involves designing a trainer.
Activity info, teachers’ notes and curriculum links
In this activity, learners will use the theme of the London Marathon to respond to a design context, investigate existing products for inspiration and design a trainer.
This activity could be used as a main lesson activity to develop skills in designing. It could also be used to introduce the review of existing products to inspire design solutions.
Tools/resources required
Pens, pencils and drawing instruments
Variety of trainers/shoes for comparison
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation
Book themed door display
Decorating a classroom door with a book theme
World Book Day is an annual event where people come together to celebrate and promote books and reading.
This resource was inspired by World Book Day and supports the development of literacy by creating a decorated door that will inspire learners to find out more about books. When passing through the door, learners could imagine that they are exiting their normal reality into the reality created in that literature.
The decorated door could be produced by a teacher or teaching assistant; however, here the learners themselves will design and create the displays.
Activity info, teachers’ notes and curriculum links
In this activity learners will identify a favourite book and use this as inspiration to design a decorated door. This links reading in English, the design process in Design & Technology and the use of art skills to produce the design.
This activity could be used as a main lesson activity, to support learners’ engagement in literacy. It could also be used as a learner-led means of generating class/door displays.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
These will depend upon the designs, but could include:
Paper and/or card, writing and colouring implements, lining paper etc.
Access to an image bank, either printed out or electronic with access to a colour printer.
Scissors and glue sticks.
Sticky tack.
A selection of books for inspiration.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
What am I? Inputs and outputs
Guess the device from a series of clues
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
People are always looking for ways to save energy. It is estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an LED based automatic home lighting system, designed to save energy.
Activity info, teachers’ notes and curriculum links
This is an engaging starter activity where learners will extend their understanding of input and output devices used in the system and consolidate their learning. They will be able to develop their knowledge of components and both test themselves and their peers.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Maths behind a heating system
This is a practical exercise in which students will utilise their mathematical knowledge to solve problems and apply formulas. Specifically, they will compute the length of pipes necessary for an underfloor heating system. They will also write a brief explanation of how a sustainable underfloor heating system operates.
This can be effectively taught within mathematics or within design and technology, as part of resistant materials or product design.
How long will this activity take?
This activity will take approximately 60-90 minutes to complete
Tools/resources required
Green School film
Projector/Whiteboard
Measuring equipment e.g. tape measures or trundle wheels
Squared paper
The engineering context
Sustainability is a key consideration in modern engineering practices. As the world faces pressing environmental challenges such as climate change and resource depletion, engineers must design solutions that not only meet the needs of society, but also minimise their impact on the planet.
Sustainable engineering involves developing systems, products and processes that are socially, economically, and environmentally responsible. This can include reducing carbon emissions, optimising energy use, minimising waste, conserving natural resources, and designing products that can be recycled or repurposed at the end of their lifecycle.
Suggested learning outcomes
By the end of this activity students will be able to describe the operation of a sustainable underfloor heating system and they will be able to create and apply mathematical formulae in a practical context.
Download the free Maths Behind a Heating System activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Materials: Fit for purpose
Explore a range of engineered and smart materials
The Materials fit for purpose activity comprises a series of short, focused tasks with a strong emphasis on developing creative thinking. Students explore a range of smart materials to identify why they have been specifically designed and engineered to provide the requisite properties and characteristics for a given purpose.
This activity requires students to be creative when applying knowledge and understanding in science to a design and technology context. This has a predominantly design and technology, and engineering focus, although the activities could be used in science, either as starters or extension activities.
Tools/resources required
Projector/Whiteboard
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your classroom learning highlights with us @IETeducation
Make a steady hand game
Prepare a suitable housing for the circuity, assemble the circuit and produce a wand and maze layout for the game
In this hands-on STEM project students will learn how to make and test a steady hand game circuit. They will prepare a suitable housing for the circuit, assemble the circuit themselves and produce a wand and maze layout for the game. This is a great way for primary school students to learn all about how simple circuits work and develop their understanding of what is meant by the terms ‘make’ and ‘break’ when referring to the flow of current around a circuit.
This could be used as a one-off activity or as part of a wider unit of work focusing on electricity and electrical circuits. It could also be used in conjunction with the IET Education Primary Poster – Circuits and Symbols.
This activity could be completed as individuals or in small groups, dependent on the tools, equipment and components available.
Tools/resources required
Plastic cups
350 mm lengths of 2 mm diameter copper wire
150 mm lengths of 2 mm diameter copper wire
150 mm lengths of 1 mm diameter copper wire
Multi strand insulated wire or crocodile clips
Solder
9 V batteries and clips
9 V buzzers with wires
Masking and/or insulating tape
Double sided tape and/or sticky pads
Pillar drill or electric hand drill
2 mm drill bits
Soldering equipment (soldering irons, stands, sponges)
Wire cutters and strippers
Safety glasses
The engineering context
Engineers need to be able to understand how basic electrical circuits work. This includes current flow, voltage and how to ‘make’ and ‘break’ circuits. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future.
Suggested learning outcomes
By the end of this activity students will have an understanding of the terms ‘make and break’ when they refer to simple circuits. They will also be able to assemble, fit and test a simple circuit for a steady hand game and they will be able to safely and accurately drill holes in plastic.
Download the activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, printable and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Using fruit batteries to produce electricity
Using lemons and limes to power an LED
In this fun STEM activity learners will construct a series circuit consisting of four fruit batteries and an LED. They will learn about the main parts of a battery and how fruit can be used to provide enough voltage to light an LED. They will also investigate how the brightness of the LED changes depending on the number of fruit batteries used in the circuit.
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on the use of fruit to power a light emitting diode (LED).
This could be used as a one-off activity or as part of a wider unit of work focusing on electricity and electrical circuits.
This activity could be completed as individuals or in small groups, dependent on the components and tools available.
Lemons or limes can be used, or a mixture of both. Each lemon or lime should provide between approximately 0.7 and 0.9 V. This can be tested by using a multimeter if required.
The total voltage of the series circuit can be calculated by adding up the voltage of each individual battery. This arrangement would produce approximately 2.8 – 3.6 V depending on the voltage of each individual piece of fruit.
How long will this activity take? Approximately 40-65 minutes to complete.
Tools/resources required
Red and black crocodile clips
Lemons and/or limes
Zinc coated nails
50 mm lengths of 1 mm or 2 mm diameter copper wire
Low voltage hi-bright LEDs
Wire cutters
The engineering context
Engineers need to be able to understand how basic electrical circuits work. This includes the main parts of a battery and how they work to power electrical output devices. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future.
Suggested learning outcomes
By the end of this activity students will understand how fruit can be used to make batteries that can power electrical output devices, they will know the main parts that make up a battery and they will be able to construct a series fruit battery circuit that lights an LED.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Electrical safety outdoors poster
Primary classroom poster showing useful rules to observe when using electricity both in and outside the home.
Download the single poster or order a full set of posters from the IET Education website.
Radio waves poster
Primary classroom poster looking at how radio waves help us connect to our friends and families.
Download the single poster here or order the full set of posters for free from the IET Education website.
Technology in sports
In this engineering activity, students will work in groups to share their knowledge of the use of technology in sport. They will each give a 60 second presentation about the topic to their group.
This task is aimed at secondary school students and could be used as a starter activity with ‘Create a portable beep tester’ as the main activity. It is an ideal exercise for learners to both demonstrate and develop their knowledge of the topic of technology in sport, and share with their peers.
Activity introduction
This activity encourages learners to recall information, helps learners develop their oral presentation skills and encourages learners to work together to develop their knowledge.
The teacher will first state to students that they will be demonstrating their existing knowledge of the use of technology in sport. They will also be developing their knowledge further by working with other learners in this group and listening to their presentations.
Learners will be expected to work in teams of four. Their topic to talk about will be ‘the use of technology in sport’. Each learner in the group will, in turn, speak about this topic to their team for 60 seconds. They must try not to hesitate, deviate or repeat any information!
Each group of four will write a summary of the main points learnt and read it out the class. This can be both in terms of knowledge of the topic and oral presentation techniques used.
The engineering context
Sports Technology is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at key stage 3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the product integration skills of learners.
Technology in sport
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Technology can be used in sports to enhance performance and help participants to improve their fitness and stamina. For example, automated beep tests can be used to monitor fitness levels during training sessions and set targets for future improvement.
In this unit of learning, students will use the BBC micro:bit to develop a prototype for an electronic beep test that can be used to help people monitor and improve their fitness levels.
Suggested learning outcomes
By the end of this activity students will be able to describe how technology can be used in sport, present an oral presentation on the topic of technology in sport and they will be able to work as part of a team to develop their knowledge of technology in sport.
Download the activity sheets for free!
And please do share your classroom learning highlights with us @IETeducation.
Design a football pitch
Designing a football arena for the moon
In this activity learners will make use of the theme of football on the moon to design a future football stadium for playing the game on the moon. They will think about the main design considerations and requirements for the stadium. They will then learn how to draw a football pitch step by step and produce annotated sketches of their idea.
This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Design & Technology, Graphic Design and Engineering. This resource focusses on learners designing a stadium for playing football on the moon.
The teacher will introduce the theme of playing football on the moon, before introducing and discussing the design brief with learners. Learners will then have time to research and design their stadia for playing football on the moon.
This activity can be simplified (particularly for less able students) by providing partially completed arena designs for weaker learners to add to and improve and/or providing card or paper cut outs of different arena elements that they could assemble to produce a finished design.
As an extension learners can introduce vector illustration to their design or make a card scale model of the stadium and/or design a stadium for playing other sports on the moon, such as athletics, rugby, cricket or netball. How would the requirements of these differ from football?
This activity is designed to take between 50-70 minutes.
Tools/resources required
Pens or pencils
Coloured pencils
Rulers
Paper
Computer and internet for research
The engineering context
Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit, how will we develop the facilities to live happy, healthy and fulfilling lives?
Suggested learning outcomes
By the end of this free resource students will be able to understand the main considerations when designing sports stadia; design a stadium for playing football on the moon; and present design ideas as annotated sketches.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.